Учеба  ->  Среднее образование  | Автор: Рафикова Галина Михайловна | Добавлено: 2015-02-19

Формулы сокращенного умножения

У истоков создания этого проекта лежит небольшая формула, которую я заметил в этом году. Если говорить точнее, это закономерность между числами. Я долго интересовался тем, что это за формула, но разные люди предполагали абсолютно разные варианты. Поскольку, безусловно, эта формула связана с квадратами чисел и я не знаю, придумал ли ее кто-то до меня, я решил сделать презентацию, в которой помимо этой закономерности рассказывалось о какой-нибудь интересной теме. Так я решил создать этот научно-исследовательский проект.

Квадрат суммы

Начнем с азов. Наверняка, каждый семиклассник (не говоря уже и о более старших школьниках) знает эту формулу. Но все же для закрепления материала стоит проверить эти знания.

(x+y)²=x²+2xy+y²

Что читается, как <<квадрат суммы двух чисел равен сумме квадрата первого числа, удвоенного произведения первого числа на второе и квадрата второго числа>>.

Квадрат разности

А вот на этой теме уже начинают встречаться сложности. К сожалению, не все ученики помнят эту формулу, некоторые путаются, но я надеюсь, что никто из нашего класса не ошибется ни в записи, ни в формулировке.

(x-y)²=x²-2xy+y²

А читается эта формула: <<Квадрат разности двух чисел равен квадрату первого числа минус удвоенное произведение первого числа на второе плюс квадрат второго числа>>.

Немного из истории. Вот мы и вспомнили первые две формулы сокращенного умножения. Как оказалось, ничего страшного в этом нет!

А задавались ли вы когда-нибудь вопросом, кто же все-таки придумал эти две формулы: квадрат суммы и квадрат разности? Некоторые источники говорят, что это был древнегреческий математик Евклид. Это было действительно уникальное открытие, поскольку мы знаем, что он жил еще в III веке до нашей эры.

Разность квадратов

Вот мы и дошли до последней формулы, связанной с квадратами чисел. В следующем слайде я докажу, почему она последняя. А пока что попытаемся вспомнить разность квадратов.

x²-y²=(x+y)(x-y)

При этом следует помнить, что множители можно менять местами.

Разность квадратов двух чисел равна произведению суммы и разности этих чисел.

Сумма квадратов

Но в школьном курсе не дается понятие этой формулы сокращенного умножения, потому что ее попросту не существует. А сейчас мы рассмотрим, почему.

  • Квадрат суммы и квадрат разности можно разложить не только по формуле, данной ранее. Их можно представить таким видом: (x+y)²=(x+y)(x+y) и (x-y)²=(x-y)(x-y).
  • На основании того, что первые три формулы сокращенного умножения можно представить в виде произведения из двух многочленов, можно утверждать, что и сумму квадратов можно представить, как произведение из двух многочленов.
  • Но все возможные комбинации уже использованы. Квадрат суммы - это произведение сумм этих чисел, квадрат разности - произведение разностей этих чисел, а разность квадратов - произведение суммы и разности. Значит, сумму квадратов нельзя представить в виде формулы сокращенного умножения.

Неполный квадрат

Для дальнейшего повторения формул сокращенного умножения мы должны также вспомнить еще один термин. Мы рассмотрели понятия квадрат суммы и квадрат разности ((x+y)²=x²+2xy+y² и (x-y)²=x²-2xy+y²). Так что же тогда такое неполный квадрат? Нам понадобятся неполный квадрат суммы и неполный квадрат разности. Неполный квадрат суммы - это x²+xy+y² (сумма квадрата первого числа, произведения первого числа на второе и второго числа), а неполный квадрат разности - это x²-xy+y² (квадрат первого числа минус произведение первого числа на второе плюс квадрат второго числа). Как мы видим, в обоих случаях вместо удвоенного произведения первого числа на второе появляется произведение первого числа на второе.

Сумма кубов

Вот мы и приступили к тому моменту, который, как я подозреваю, мало кто помнит. Время проверить знания.

x³+y³=(x+y)(x²-xy+y²)

Сумма кубов двух чисел равна произведению этих чисел и неполного квадрата их суммы.

Разность кубов

И сейчас мы вспомним еще одну, очень похожую на предыдущую, формулу.

x³-y³=(x-y)(x²+xy+y²)

Читается: <<Разность кубов двух чисел равна произведению разности этих чисел и неполного квадрата их суммы>>.

Куб суммы

Эту формулу и следующую за ней немного сложно запомнить, но я все же надеюсь, что в нашем классе есть ученики с хорошей памятью, что мы сейчас и проверим.

(x+y)³=x³+3x²y+3xy²+y³

Куб суммы двух чисел равен сумме квадрата первого числа, утроенного произведения квадрата первого числа на второе, утроенного произведения первого числа на квадрат второго и куба второго числа.

Куб разности

И вот наконец мы дошли до последней формулы, изучаемой в седьмом классе.

(x-y)³=x³-3x²y+3xy²-y³

Куб разности двух чисел равен кубу первого числа минус утроенное произведение квадрата первого числа на второе плюс утроенное произведение первого числа на квадрат второго минус куб второго числа.

Комментарии


Войти или Зарегистрироваться (чтобы оставлять отзывы)