Формулы сокращенного умножения
У истоков создания этого проекта лежит небольшая формула, которую я заметил в этом году. Если говорить точнее, это закономерность между числами. Я долго интересовался тем, что это за формула, но разные люди предполагали абсолютно разные варианты. Поскольку, безусловно, эта формула связана с квадратами чисел и я не знаю, придумал ли ее кто-то до меня, я решил сделать презентацию, в которой помимо этой закономерности рассказывалось о какой-нибудь интересной теме. Так я решил создать этот научно-исследовательский проект.
Квадрат суммы
Начнем с азов. Наверняка, каждый семиклассник (не говоря уже и о более старших школьниках) знает эту формулу. Но все же для закрепления материала стоит проверить эти знания.
(x+y)²=x²+2xy+y²
Что читается, как <<квадрат суммы двух чисел равен сумме квадрата первого числа, удвоенного произведения первого числа на второе и квадрата второго числа>>.
Квадрат разности
А вот на этой теме уже начинают встречаться сложности. К сожалению, не все ученики помнят эту формулу, некоторые путаются, но я надеюсь, что никто из нашего класса не ошибется ни в записи, ни в формулировке.
(x-y)²=x²-2xy+y²
А читается эта формула: <<Квадрат разности двух чисел равен квадрату первого числа минус удвоенное произведение первого числа на второе плюс квадрат второго числа>>.
Немного из истории. Вот мы и вспомнили первые две формулы сокращенного умножения. Как оказалось, ничего страшного в этом нет!
А задавались ли вы когда-нибудь вопросом, кто же все-таки придумал эти две формулы: квадрат суммы и квадрат разности? Некоторые источники говорят, что это был древнегреческий математик Евклид. Это было действительно уникальное открытие, поскольку мы знаем, что он жил еще в III веке до нашей эры.
Разность квадратов
Вот мы и дошли до последней формулы, связанной с квадратами чисел. В следующем слайде я докажу, почему она последняя. А пока что попытаемся вспомнить разность квадратов.
x²-y²=(x+y)(x-y)
При этом следует помнить, что множители можно менять местами.
Разность квадратов двух чисел равна произведению суммы и разности этих чисел.
Сумма квадратов
Но в школьном курсе не дается понятие этой формулы сокращенного умножения, потому что ее попросту не существует. А сейчас мы рассмотрим, почему.
- Квадрат суммы и квадрат разности можно разложить не только по формуле, данной ранее. Их можно представить таким видом: (x+y)²=(x+y)(x+y) и (x-y)²=(x-y)(x-y).
- На основании того, что первые три формулы сокращенного умножения можно представить в виде произведения из двух многочленов, можно утверждать, что и сумму квадратов можно представить, как произведение из двух многочленов.
- Но все возможные комбинации уже использованы. Квадрат суммы - это произведение сумм этих чисел, квадрат разности - произведение разностей этих чисел, а разность квадратов - произведение суммы и разности. Значит, сумму квадратов нельзя представить в виде формулы сокращенного умножения.
Неполный квадрат
Для дальнейшего повторения формул сокращенного умножения мы должны также вспомнить еще один термин. Мы рассмотрели понятия квадрат суммы и квадрат разности ((x+y)²=x²+2xy+y² и (x-y)²=x²-2xy+y²). Так что же тогда такое неполный квадрат? Нам понадобятся неполный квадрат суммы и неполный квадрат разности. Неполный квадрат суммы - это x²+xy+y² (сумма квадрата первого числа, произведения первого числа на второе и второго числа), а неполный квадрат разности - это x²-xy+y² (квадрат первого числа минус произведение первого числа на второе плюс квадрат второго числа). Как мы видим, в обоих случаях вместо удвоенного произведения первого числа на второе появляется произведение первого числа на второе.
Сумма кубов
Вот мы и приступили к тому моменту, который, как я подозреваю, мало кто помнит. Время проверить знания.
x³+y³=(x+y)(x²-xy+y²)
Сумма кубов двух чисел равна произведению этих чисел и неполного квадрата их суммы.
Разность кубов
И сейчас мы вспомним еще одну, очень похожую на предыдущую, формулу.
x³-y³=(x-y)(x²+xy+y²)
Читается: <<Разность кубов двух чисел равна произведению разности этих чисел и неполного квадрата их суммы>>.
Куб суммы
Эту формулу и следующую за ней немного сложно запомнить, но я все же надеюсь, что в нашем классе есть ученики с хорошей памятью, что мы сейчас и проверим.
(x+y)³=x³+3x²y+3xy²+y³
Куб суммы двух чисел равен сумме квадрата первого числа, утроенного произведения квадрата первого числа на второе, утроенного произведения первого числа на квадрат второго и куба второго числа.
Куб разности
И вот наконец мы дошли до последней формулы, изучаемой в седьмом классе.
(x-y)³=x³-3x²y+3xy²-y³
Куб разности двух чисел равен кубу первого числа минус утроенное произведение квадрата первого числа на второе плюс утроенное произведение первого числа на квадрат второго минус куб второго числа.
Комментарии